
July 2021

VASP 6.2 
ACCELERATED PERFORMANCE



2

Introduction to VASP

Supported Accelerated features in VASP 6.2

Performance of VASP on NVIDIA

Operational benefits of NVIDIA technology

AGENDA



3

INTRODUCTION TO VASP

Most widely used GPU-accelerated software for 
electronic structure of solids, surfaces, and 
interfaces

Generates

• Chemical and physical properties

• Reactions paths

Capabilities

• First principles scaled to 1000s of atoms 

• Materials and properties - liquids, crystals, magnetism, 

semiconductors/insulators, surfaces, catalysts

• Solves many-body Schrödinger equation

Quantum-mechanical methods and solvers

• Density Functional Theory (DFT)

• Plane-wave based framework 

• New implementations for hybrid DFT (HF exact exchange)

Scientific Background



4

VASP SOFTWARE ORIGINS

Developed by Kresse group at the University 
of Vienna and VASP Software GmbH

Development began >25 years ago

460K lines of Fortran code

MPI parallel, OpenMP recently added for 
multicore

GPU acceleration efforts started prior to 2011 
with CUDA C

Key facts Computational characteristics

Many small Fast-Fourier-Transformations ~1003

All-to-all communications

Matrix operations

• Matrix-Matrix multiplications

• Matrix-Vector multiplications

• Diagonalizations

Custom kernels



5

Introduction to VASP

Supported Accelerated features in VASP 6.2

Performance of VASP on NVIDIA

Operational benefits of NVIDIA technology

AGENDA



6

FEATURES AVAILABLE AND ACCELERATED IN VASP 6.2

• Existing acceleration

• New acceleration

• Acceleration work in progress

• On acceleration roadmap

LEVELS OF THEORY
Standard DFT (incl. meta-GGA, vdW-DFT)

Hybrid DFT (double buffered)

Cubic-scaling RPA (ACFDT, GW)

Bethe-Salpeter Equations (BSE)
…

PROJECTION SCHEME

Real space  

Reciprocal space

EXECUTABLE FLAVORS
Standard variant

Gamma-point simplification variant  

Non-collinear spin variant

SOLVERS / MAIN ALGORITHM
Davidson (+Adaptively Compressed Exch.)

RMM-DIIS

Davidson+RMM-DIIS

Direct optimizers (Damped, All)  

Linear response



7

FEATURES AVAILABLE AND ACCELERATED IN VASP 6.1

LEVELS OF THEORY
Standard DFT

Hybrid DFT (double buffered)

Cubic-scaling RPA (ACFDT, GW)

Bethe-Salpeter Equations (BSE)
…

PROJECTION SCHEME

Real space  

Reciprocal space

EXECUTABLE FLAVORS
Standard variant

Gamma-point simplification variant  

Non-collinear spin variant

SOLVERS / MAIN ALGORITHM
Davidson (+Adaptively Compressed Exch.)

RMM-DIIS

Davidson+RMM-DIIS

Direct optimizers (Damped, All)  

Linear response

• Existing acceleration

• New acceleration

• Acceleration work in progress

• On acceleration roadmap



8

FEATURES AVAILABLE AND ACCELERATED FROM VASP 5

LEVELS OF THEORY
Standard DFT

Hybrid DFT

RPA (ACFDT, GW)

Bethe-Salpeter Equations (BSE)

…

PROJECTION SCHEME

Real space  

Reciprocal space

EXECUTABLE FLAVORS
Standard variant

Gamma-point simplification variant  

Non-collinear spin variant

SOLVERS / MAIN ALGORITHM
Davidson

RMM-DIIS

Davidson+RMM-DIIS

Direct optimizers (Damped, All)  

Linear response

• Existing acceleration

• New acceleration

• Acceleration work in progress

• On acceleration roadmap



9

Introduction to VASP

Supported Accelerated features in VASP 6.2

Performance of VASP on NVIDIA

Operational benefits of NVIDIA technology

AGENDA



10

0

2

4

6

8

10

12

14

16

2x EPYC 1x A100 2x A100 4x A100 8x A100

6.1.2 6.2.0

VASP VERSION UPDATES BRING NEW ACCELERATION

Better than 
22%

improvement

VASP versions

S
p
e
e
d
u
p

-
re

la
ti

v
e
 t

o
 6

.1
.2

 o
n
 E

p
y
c

6
.1

.2

6
.1

.2

6
.1

.2

6
.2

.0
6
.2

.0

6
.2

.0

6
.2

.0

6
.1

.2

Dataset: Si256_VJT_HSE06

CPU only

Rome 7742

6
.2

.0

6
.1

.2

# of GPUs (A100 SXM4 80 GB)



11

0

1

2

3

4

5

6

1 2 4 8

EPYC 7742 V100 32GB

NEW NVIDIA GPU PLATFORMS - ADDITIONAL ACCELERATION

Dataset: Si-Huge
# of GPUs

V100 32GB  & A100 80GB

A
1
0
0

A
1
0
0

A
1
0
0

A
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

Up to 41% increase in 
speed V100 to A100 

S
P
E
E
D

U
P

–
re

la
ti

v
e
 t

o
 E

P
Y
C
 7

7
4
2

Dual AMD CPU

VASP 6.1.2



12

CPU-only: 2xEPYC 7742 GPUs: A100-SXM4-80GB with HPC SDK 21.2 and CUDA 11.0



13

AMDAHL’S LAW

serial section

parallel section

serial section

parallel section

serial section

Some Parallelism

Program time =
sum(serial times + parallel times)

Increased Parallelism

Parallel sections take less time

Serial sections take same time

Infinite Parallelism

Parallel sections take no time

Serial sections take same time

Time 
saved

Amdahl’s Law

Shortest possible 

runtime is sum
of serial section 

times

ti
m

e

ti
m

e



14

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

0 20 40 60 80 100 120 140

# Nodes

NBLOCK_FOCK=64

ideal

Amdahl

Amdahl Extrapolation

Efficiency

MULTI NODE VASP – SCALING EXAMPLE

Dataset: Si256_VJT_HSE06

S
P
E
E
D

U
P

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

NBLOCK_FOCK=64

ideal

Amdahl

# Nodes

With an Amdahl’s law numerical fit 
the approximation is quite good

8 V100 GPUs nodes connected with HDR Infiniband

S
P
E
E
D

U
P

50% Scaling efficiency occurs at 30 
nodes in this example



15

Introduction to VASP

Supported Accelerated features in VASP 6.2

Performance of VASP on NVIDIA

Operational benefits of NVIDIA technology

AGENDA



16

“ For VASP, OpenACC is the way forward 

for GPU acceleration. Performance is 

similar and in some cases better than 

CUDA C, and OpenACC dramatically 

decreases GPU development and 

maintenance efforts.”
Prof. Georg Kresse

CEO of VASP Software GmbH

Computational Materials Physics
University of Vienna

WHY VASP DEVELOPERS CHOSE OPENACC



17

VASP 6 WITH OPENACC

Works on all architectures supported by NVIDIA: x86, POWER and ARM

Ideally all GPUs connect with 16 PCIe lanes to the CPUs, otherwise use PCIe switches to share 
lanes with NICs

Best performance on NVIDIA GPUs with strong double precision (FP64) capabilities on A100, 
A30 is also an option. Volta generation V100 continues to provide excellent performance.

NVLink GPU-GPU-interconnects speed-up AllToAll communication

Dense GPU nodes preferred for throughput, fast network like Mellanox Infiniband is essential

Hardware requirements and recommendations



18

VASP 6 WITH OPENACC

NVIDIA HPC SDK 21.5, no cost and includes requirements

• OpenACC compiler (formerly PGI)

• NVIDIA CUDA Toolkit and Libraries: cuBLAS, cuFFT, cuSOLVER and NCCL

• CUDA-aware MPI (OpenMPI 3.1.5 without UCX recommended; otherwise use UCX ≥1.9)

CPU math libraries: FFTW (compile with GCC, don’t use OpenMP support), OpenBLAS and ScaLAPACK

Software requirements and recommendations

https://developer.nvidia.com/hpc-sdk


19

VASP 6.2 WITH OPENACC

HPC SDK brings all dependencies besides FFTW, so you only need to adapt this variable in makefile.include to match 
the path on your system, or export them as an environment variable, e.g.:

export FFTW=/opt/fftw-3.3.9

It is recommended to build on the target system, otherwise add the appropriate –tp flag to the FC, FCL, FC_LIB, CC_LIB 
and CXX_PARS lines

Build the binaries accelerated using OpenACC:

make std gam ncl DEPS=1 –j 10

How to compile



20

VASP 6 WITH OPENACC

Run with 1 MPI rank per GPU
(requirement by NCCL library; don’t use MPS as with the 
CUDA-C-port anymore)

Restrict libraries (like OpenBLAS or FFTW) to run with 1 
thread per process only

VASP will select the GPUs automatically and use them in 
sequential order: Rank 0 → GPU 0, Rank 1 → GPU 1, …

Bind your processes to the CPU sockets with correct 
affinities to the GPUs and NICs. In doubt check with

$ nvidia-smi topo -m

How to run the accelerated version



21

VASP 6 WITH OPENACC

Use a script like the following and run with mpirun –n 8 runscript.sh vasp_std

Example runscript.sh for DGX1:

#!/usr/bin/env bash

export UCX_RNDV_THRESH=1024

export UCX_MEMTYPE_CACHE=n

export OMP_NUM_THREADS=1

NICS=(mlx5_0 mlx5_0 mlx5_1 mlx5_1 mlx5_2 mlx5_2 mlx5_3 mlx5_3)

CPUS=(0 0 0 0 1 1 1 1)

lrank=$OMPI_COMM_WORLD_LOCAL_RANK

export UCX_NET_DEVICES=${NICS[$lrank]}:1

export OMPI_MCA_btl_openib_if_include=${NICS[$lrank]}

numactl --cpunodebind=${CPUS[$lrank]} --membind=${CPUS[$lrank]} $@

Binding your processes with correct affinities



22

VASP 6 WITH OPENACC

Use vasp_gam binary when possible! Saves memory and faster execution

INCAR: Remove NPAR and set NCORE=1: VASP 6.1.2 will do this for you internally, but better be safe.

INCAR: For vasp_std and vasp_ncl jobs, set KPAR: Use a value that evenly divides the number of k-points (grep 
NKPTS OUTCAR) by the number of GPUs. The higher the better. Much improved performance for increased memory usage.

INCAR: For standard and hybrid DFT jobs tune NSIM parameter. Test powers of 2 until it uses too much memory or 
performance stops improving.

INCAR: For hybrid DFT jobs, tune NBLOCK_FOCK parameter. Use a value that evenly divides the number of bands/orbitals 
(grep NBANDS OUTCAR) by the number of GPUs. As a rule of thumb, the higher the better.

Tune your VASP jobs



23

VASP RECOMMENDED USAGE PLATFORM

Motherboard and CPU Single- or Dual-socket CPU

System memory >=32GB

GPUs V100 / A100

GPUs per socket 1 to 4

GPUs per node 1 to 16

Multi-node capable Yes

23

Motherboard and CPU Single or Dual-socket CPU

System memory >=32GB

NVIDIA GPU A100

GPUs per CPU socket 1 to 4

GPUs per node 1 to 8

Multi-node capable Yes

Multi-node interconnect ConnectX6 (EDR IB)




